Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1081-1082: 76-86, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29518720

RESUMO

Eclipta alba (Bhringraj) in ayurveda has been widely used as a traditional medicine for its multi-therapeutic properties for ages. Luteolin (LTL), wedelolactone (WDL) and apigenin (APG) are the three main bioactive phytochemicals present in Eclipta alba extract. However there was a lack of sensitive bioanalytical method for the pharmacokinetics of these free compounds in plasma which majorly contributes for their activities after oral administration of Eclipta alba. The present study aims to develop a sensitive, rapid and reliable liquid chromatography tandem mass spectrometry (LC-MS/MS) method for the simultaneous estimation of mice plasma concentrations of LTL, WDL and APG using quercetin as an internal standard for the pharmacokinetic analysis. Analytes were separated on Phenomenex Luna C18 (150 × 4.6 mm, 3.0 µm) column with mobile phase containing methanol: acetonitrile (90: 10, v/v) and 0.1% formic acid in 10 mM ammonium formate buffer in the ratio of 70: 30 (v/v) in isocratic mode. Liquid-liquid extraction was optimized using Hansen solubility parameters and diethyl ether finalized as an extraction solvent for the recovery ranging from 61 to 76% for all analytes in mice plasma. The validated method has an accuracy and precision over the linearity range of 0.1-200 ng/mL with a correlation coefficient (r2) of ≥0.997. The intra and inter-day assay accuracy was between 98.17 and 107% and 95.83-107.89% respectively and the intra and inter day assay precision ranged from 0.37-6.05% and 1.85-10.76%, respectively for all the analytes. This validated method can be used for future clinical investigation studies of Eclipta alba extracts.


Assuntos
Apigenina/sangue , Cumarínicos/sangue , Eclipta/química , Extração Líquido-Líquido/métodos , Luteolina/sangue , Extratos Vegetais/farmacocinética , Animais , Apigenina/química , Apigenina/isolamento & purificação , Apigenina/farmacocinética , Clorofórmio , Cromatografia Líquida/métodos , Cumarínicos/química , Cumarínicos/isolamento & purificação , Cumarínicos/farmacocinética , Limite de Detecção , Modelos Lineares , Luteolina/química , Luteolina/isolamento & purificação , Luteolina/farmacocinética , Camundongos , Extratos Vegetais/química , Reprodutibilidade dos Testes , Solubilidade , Espectrometria de Massas em Tandem/métodos
2.
Sci Rep ; 5: 18457, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26672742

RESUMO

Major challenges for current therapeutic strategies against breast cancer are associated with drug-induced toxicities. Considering the immense potential of bioactive phytochemicals to deliver non-toxic, efficient anti-cancer therapeutics, we performed bio-guided fractionation of Eclipta alba extract and discovered that particularly the chloroform fraction of Eclipta alba (CFEA) is selectively inducing cytotoxicity to breast cancer cells over non-tumorigenic breast epithelial cells. Our unbiased mechanistic hunt revealed that CFEA specifically activates the intrinsic apoptotic pathway by disrupting the mitochondrial membrane potential, upregulating Hsp60 and downregulating the expression of anti-apoptotic protein XIAP. By utilizing Hsp60 specific siRNA, we identified a novel pro-apoptotic role of Hsp60 and uncovered that following CFEA treatment, upregulated Hsp60 is localized in the endoplasmic reticulum (ER). To our knowledge, this is the first evidence of ER specific localization of Hsp60 during cancer cell apoptosis. Further, our LC-MS approach identified that luteolin is mainly attributed for its anti-cancer activities. Moreover, oral administration of CFEA not only offers potential anti-breast cancer effects in-vivo but also mitigates tumor induced hepato-renal toxicity. Together, our studies offer novel mechanistic insight into the CFEA mediated inhibition of breast cancer and may potentially open up new avenues for further translational research.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Chaperonina 60/metabolismo , Eclipta/química , Retículo Endoplasmático/metabolismo , Neoplasias Mamárias Experimentais/tratamento farmacológico , Animais , Western Blotting , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Chaperonina 60/genética , Clorofórmio/química , Feminino , Humanos , Células MCF-7 , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Microscopia Confocal , Fitoterapia/métodos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
3.
Expert Rev Anticancer Ther ; 13(9): 1121-33, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24053209

RESUMO

Hematological malignancies is a broad term that includes blood cell cancers including chronic lymphocytic leukemia (CLL), chronic myeloid leukemia (CML), acute myeloid leukemia (AML), Myelodysplastic syndrome, acute lymphocytic leukemia (ALL), multiple myelomas (MM) and lymphomas. miRNAs are ~22-nt long non-coding RNAs that play a very important role in gene regulation by binding to mRNA at their complementary sequence. These miRNAs are conceptually connected with various signal and pathway networks that make them capable of regulating various diseases including hematological malignancies. These miRNAs are not only playing regulatory roles in hematological malignancies, but are also providing new potent markers for efficient diagnosis and prognosis for hematological malignancies patients. Since the discovery of very first miRNA, the importance and role of miRNAs have been established in various fields, and there is a need to search for new potent miRNAs and their targets. A large amount of sequence data have been generated in last few years, which has further generated the need to develop efficient and reliable computational tools to analyze and extract out relevant information promptly from raw data. Here, we review various possible roles played by miRNA in hematological malignancies, principles involved in miRNA gene identification, target prediction and their preceding role in hematological malignancies research.


Assuntos
Neoplasias Hematológicas/genética , MicroRNAs/genética , Humanos
4.
BMC Genomics ; 9: 427, 2008 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-18801193

RESUMO

BACKGROUND: Aeromonas salmonicida subsp. salmonicida is a Gram-negative bacterium that is the causative agent of furunculosis, a bacterial septicaemia of salmonid fish. While other species of Aeromonas are opportunistic pathogens or are found in commensal or symbiotic relationships with animal hosts, A. salmonicida subsp. salmonicida causes disease in healthy fish. The genome sequence of A. salmonicida was determined to provide a better understanding of the virulence factors used by this pathogen to infect fish. RESULTS: The nucleotide sequences of the A. salmonicida subsp. salmonicida A449 chromosome and two large plasmids are characterized. The chromosome is 4,702,402 bp and encodes 4388 genes, while the two large plasmids are 166,749 and 155,098 bp with 178 and 164 genes, respectively. Notable features are a large inversion in the chromosome and, in one of the large plasmids, the presence of a Tn21 composite transposon containing mercury resistance genes and an In2 integron encoding genes for resistance to streptomycin/spectinomycin, quaternary ammonia compounds, sulphonamides and chloramphenicol. A large number of genes encoding potential virulence factors were identified; however, many appear to be pseudogenes since they contain insertion sequences, frameshifts or in-frame stop codons. A total of 170 pseudogenes and 88 insertion sequences (of ten different types) are found in the A. salmonicida genome. Comparison with the A. hydrophila ATCC 7966T genome reveals multiple large inversions in the chromosome as well as an approximately 9% difference in gene content indicating instances of single gene or operon loss or gain.A limited number of the pseudogenes found in A. salmonicida A449 were investigated in other Aeromonas strains and species. While nearly all the pseudogenes tested are present in A. salmonicida subsp. salmonicida strains, only about 25% were found in other A. salmonicida subspecies and none were detected in other Aeromonas species. CONCLUSION: Relative to the A. hydrophila ATCC 7966T genome, the A. salmonicida subsp. salmonicida genome has acquired multiple mobile genetic elements, undergone substantial rearrangement and developed a significant number of pseudogenes. These changes appear to be a consequence of adaptation to a specific host, salmonid fish, and provide insights into the mechanisms used by the bacterium for infection and avoidance of host defence systems.


Assuntos
Aeromonas salmonicida/genética , Peixes/microbiologia , Genoma Bacteriano , Aeromonas hydrophila/genética , Aeromonas salmonicida/patogenicidade , Animais , Elementos de DNA Transponíveis , Evolução Molecular , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...